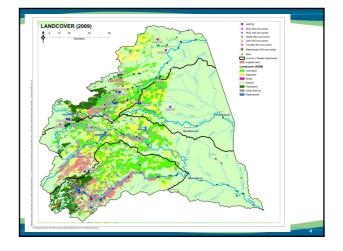
Development of Reconciliation Strategy for Luvuvhu & Letaba Water Supply System

WATER QUALITY AND RE-USE TASK

Presentation Contents


- Background
- Water Quality Assessment Approach
- Available Water Quality Data
- Water Quality Guidelines
- Water Quality Status
- Assessment of re-use potential

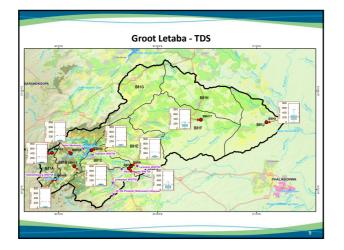
BACKGROUND

- The main water users in the Study Area are:
 - Domestic users (densely populated informal urban settlements and formal urban to scattered rural settlements);
 - Tourism;

water affairs

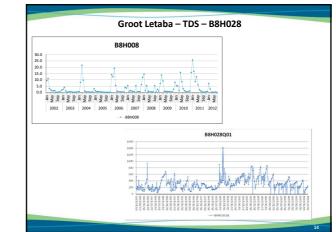
- Irrigation:
- Fruit growers and tea plantations in the Magoebaskloof/Tzaneen area;
- Commercial forests;
- Dry land crops including (Maize; Sorghum; Cotton; Ground nuts; Sunflowers);
- Limited underground coal mining in the Mutale catchment.

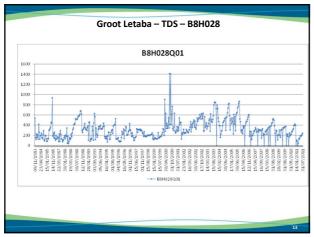
Assessment Approach


- Collated available water quality data
- Screened dataset based on duration, location and sampling frequency
- Calculated statistics percentiles shown as box and whisker plots
- Establish Water Quality Guidelines against which to compare the statistics
 - Used South African Water Quality Guidelines for different users
 - Ecological Reserve water quality
- Identify water quality variables of concern

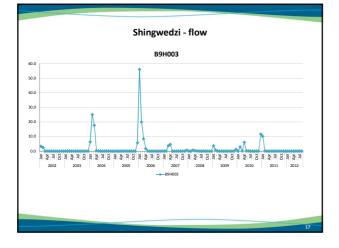
Water Quality Data

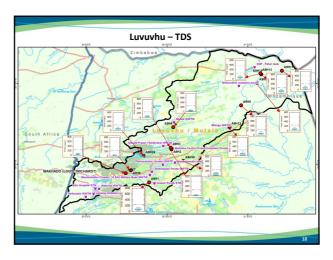
- 62 water quality monitoring points data assessed Key points included in this presentation
- The period covered varies in length longest records are measured in the dams dating back to the 1960's
- · Average sampling frequency is monthly
- Water quality variables assessed were pH, TDS/EC, Ca, Mg, Cl, PO4, NO3 and ammonia
- Limited instream microbiological data

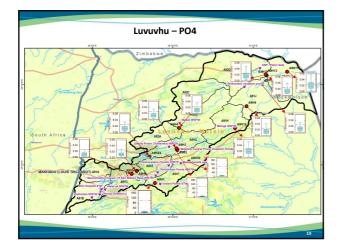

14/-4		L. C	-1:
vvat	er Quali	ty Gula	ennes
Parameter	•	•	
Aluminium	ngt	40.01	Agric
Ammonia	fgm	1 (0.007)	Dom(Agric (Res)
Arsenic	fgm	0.01	Agric/Dom
Seryllium	rign	-0.1	Arris
Scron	ran	40.5	Agric
Cadmium	right	< 0.005 (<0.0005)	Agric
Calcium	rign	32	Dom
Chloride	ram.	<100	Agric
Chromium III	/gm	<0.012	Agric
Chromium IV	rigm.	<0.01	Agric
Cobalt	/gm	40.5	Agric
Copper	/gm	<0.2 (0.0015)	Agric
Cyunide	ram	<0.001	Agric
Dissolved Oxygen	x	80-120	Agric
Electrical Conductivity	m5,/m	40	Agric
Faecal coliforms	Counts per 100 ml	0	Dom
Fluoride	/gm	0.7 (<2)	Dom (Agric)
Iron	/gm	0.1	Dom
Uthlum	fgm	42.5	Agric
Magnesium	f gm	30	Agric
Manganese	f gm	-0.02	Agric
Mercury	/gm	0.001 (0.0004)	Dom (Agric)
Nickel	rgm	<0.2	Agric
Nitrate	ran.	6	Dom
Total inorganic nitrogen	rgn	<0.5 (5)	Agric
pH	rgn	6.5-8.4	Agric
Phenol	fam	0.001 (<0.03)	Dom(Agric)
Orthophosphate	fgm	<0.025	Reserve
Potassium	/gm	<50	Dom
Selenium	f gm	0.02 (<0.002)	Agric
Sodium	f gm	<70	Agric
SAR	f gm	a	Agric
Sulphate	f gm	200	Dom
Total Dissolved Solids	figm.	260	Agric
Zinc	fam	<1 (<0.002)	Agric











Water Quality Issues

• Luvuvhu

- Intensive irrigation, urban areas numerous small WWTWs
- Good quality from salinity perspective
- Eutrophication potential with elevated phosphate concentrations
- Microbiological pollution and cholera incidents reported
- Research into use of DDT for malaria control

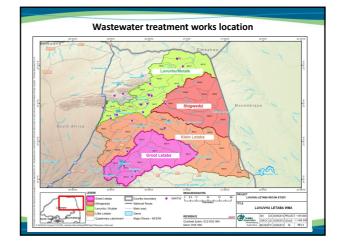
Water Quality Issues

Groot Letaba

- Salinity water quality good
- Local areas of high phosphate in urban areas around WWTW
- Elevated phosphate mesotrophic range

• Klein Letaba

- Higher TDS concentrations than Groot Letaba, particularly in middle reaches in irrigation and urban areas around Giyani
- High localised phosphate concentrations around Giyani area


Water Quality Issues

• Shingwedzi

- Limited sampling points
- Most of the catchment is in KNP
- 95 percentile TDS concentrations higher than other areas due to evaporation concentration during the dry season

Water Re-use

- Direct Re-use treatment to a water quality for a specific user could be industrial or potable
- Indirect Re-use Release to river or to a dam for use downstream

Resource	Wastewater treatment works	Туре	Capacity	concern in all cases	
OIIIts	Donald Fraser WWTW	Oxidation ponds	2 MI/d		
	Malamulele WWTW	Bio filter	2 MI/d	Faecal coli, EC,	
Levuvhu Mutale catchment	Maunavhathu Military Base WWTW	Oxidation ponds	2 MI/d	рН, SS, NO ₄ , COD, NH ₄ , O-PO ₄	
	Mhinga WWTW	Oxidation ponds	2 MI/d		
	Muledeni WWTW	Oxidation ponds	NI		
	Siloam Ponds WWTW	Oxidation ponds	2 MI/d		
	Vuwani Ponds WWTW	Oxidation ponds	0.75 m3/d	Re-use of oxidation pond effluent for irrigation is not recommended unless the faecal coli count is < 1000 CFU/100 ml	
	Tshifulanani Ponds WWT (Dzindi)	Oxidation ponds	2 MI/d		
	Vondo WWTW	Oxidation ponds	2 MI/d		
	Hlanganani Ponds WWTW	Oxidation ponds	2 MI/d		
	Louis Trichardt WWTW	Oxidation ponds	2 MI/d		
	Makhado (V) WWTW	Oxidation ponds	2 MI/d		
	Waterval WWTW	Activated sludge	10 MI/d		
	Dzanani oxidation ponds	Oxidation ponds	NI		
	Mutale WWTW	Oxidation ponds	NI		
	Masisi Septic tanks	Septic tanks	NI		
	Tshikondeli Ponds	Oxidation Ponds	NI		
Groot Letaba catchment	Tzaneen WWTW	Bio Filter & Activated sludge	8 MI/d	Activated sludge and biofilters will need to	
	Nkowankowa WWTW	Bio Filter	4.5 MI/d		
	Lenyenye WWTW	Oxidation ponds	1 MI/d		
Klein and	Ga- Kgapane WWTW	Bio filter	4 MI/d	be upgraded	
Middle Letaba	Giyani WWTW	Bio filter	2.1 MI/d	considerably before	
Catchment	Hlanganani Ponds WWTW	Oxidation ponds	2 MI/d	effluent can be re-	
				used.	

Water Re-use: WWTW

- Limited volume of treated effluent available
- WWTW would have to be significantly upgraded for direct re-use for potable or industrial use
- Potential for irrigation use in urban areas parks etc – need to improve treatment before irrigation can be considered
- Most useful to release to river for downstream use after treating to required standard

